
 

Global Journal of Scientific Researches 
Available online at gjsr.blue-ap.org 

©2014 GJSR Journal. Vol. 3(3), pp. 12-24, 30 June, 2015 

E-ISSN: 2311-732X 

 

Determining robot’s maximum dynamic load carrying 

capacity in point-to-point motion by applying limitation of 

joints’ torque 
 
H. R. Shafei1, M. Bahrami2, A. Kamali E3 and A. M. Shafei4* 

  
1- Mechanic Engineering Department, Amirkabir University of Technology, Tehran, Iran 

2- Mech. Eng. Amirkabir University of Technology, Tehran, Iran 

3- Mech. Eng. Amirkabir University of Technology, Tehran, Iran 

4- Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran 

Corresponding Author: A. M. Shafei 

 
Received:  15 May, 2015                Accepted: 12 June, 2015                   Published: 30 June, 2015 

 

A B S T R A C T   

 

        This article seeks to determine a two-link robot’s maximum dynamic load carrying capacity (DLCC) in a point-to-point motion by applying torque limits 

on its joints. The method presented here is based on open-loop optimal control and it uses indirect approach to derive optimality conditions. The Pontryagin's 

minimum principle (PMP) has been used to obtain the optimality conditions that it leads to a two-point boundary value problem (TPBVP). Two sets of 

differential equations and one algebraic equation are obtained which are solved by using BVP4C command in MATLAB software. In this paper, a robot’s 

DLCC in a point-to-point motion has been determined in two ways. In the first case, no torque limit constraint has been considered in the Hamiltonian function 

for the joints; while in the second case, this constrain has been incorporated into the Hamiltonian function and it appears in the equations obtained by using 

PMP which causes this constrain to show up in the state and costate equations. In both cases, simulations have been performed. The simulation results indicate 

that when a torque limit constraint is considered in the Hamiltonian function, the angular positions and velocity of robot’s joints are the same, but the torque 

of joints are different. 
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INTRODUCTION 
 

 The dynamic load carrying capacity of a robot is defined as “the maximum load that a robotic system can carry provided 

that the motors' torques do not exceed the saturation limits”. DLCC is one of the criteria for selection of robotic systems. 

Generally, two methods (direct and indirect) exist for solving the problem of DLCC (1-2).  

 

Direct method:  

 This method is based on the discretization of a system’s dynamic variables (state and control variables) that leads to a 

parameter optimization problem. Then, linear optimization methods (3), nonlinear optimization methods (4), evolutionary 

techniques (5) or Stochastic Techniques (6) are employed to obtain the optimal values of the parameters. The variables may be 

classified as state variables, control variables or both (7). The linearizing procedure in direct method and its convergence is a 

challenging issue, especially when nonlinear terms are large and fluctuating (7, 8). In this way, the obtained answer is an 

approximate solution which is directly related to the order of polynomial function. Wang et al. (4) have solved an optimal control 

problem by using ‘Bspline’ functions to calculate the maximum load of a fixed manipulator. The main idea of their research is 

to discretization the joints trajectories by using Bspline functions and then determining the parameters through nonlinear 

optimization so as to obtain a local minimum which yields the constraints. A shortcoming of this method is that it limits the 

solution to a fix-order polynomial (9). 
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 Iterative Linear Programming (ILP) is another direct method by which a trajectory optimization problem becomes a linear 

programming problem. The first formulation of this method for calculating the maximum load carried by a simple robot has been 

provided by Wang and Ravani (4). The linearization operation in the ILP method and its convergence towards the optimal path 

are difficult tasks, especially when a system has a large degree of freedom or it contains large and fluxionary nonlinear terms. 

 Korayem and Ghariblu used the ILP method to determine the DLCC of a robotic arm with elastic links and also with elastic 

joints for point-to-point motion and also for motion along a specified trajectory (10, 11). They formulated the DLCC problem as 

an optimization problem and then employed the ILP method (a direct method) to solve the problem. In their work the boundary 

conditions are hardly satisfied and there is an almost 10% error in the final solution.  

 

Indirect method:  

 This is another method for obtaining the optimal trajectory of the maximum payload. The indirect method, which is based 

on the PMP, was initially used to solve optimal control problems (12). This method was employed to solve the problems of 

obtaining the minimum time of motion along specified trajectories (13). In this method, the optimality conditions are extracted 

as a set of differential equations which, along with the given boundary conditions, form a TPBVP.  These sets of differential 

equations are solved by means of numerical techniques such multiple shooting method (14) or Gradient method (GM) (15). By 

solving this problem an exact solution can be found. Through this approach, the optimal trajectories for fixed and redundant 

robots can be calculated by considering different objective functions such as the maximization of the load carrying, minimization 

of the movement time and minimization of torque, etc. By applying an indirect method which yielded a TPBVP, Korayem and 

Nikoobin obtained a two-link robot’s DLCC in a point-to-point task (16). 

 In this article, first, a two-link robot’s DLCC is determined by applying torque constraint on the joints (as was previously 

obtained by Korayem and Nikoobin (16)). Then by revising the method used in Ref. (16) and considering the application of 

dynamic torque, the problem is resolved and then the obtained results are compared to each other. 

 So, the rest of the paper is organized as follows. In Section 2 the mathematical modeling of the problem will be described. 

Section 3 is devoted to extract optimality conditions and the TPBVP. In Section 4, first, a two-link robot’s DLCC is obtained 

using the method applied in Ref. (16), and then this problem is resolved by assuming dynamic torque of each joint. And finally 

in Section 5 the conclusions from the present work are summarized. 

 

Problem formulation: 

The dynamical model of a robot is described in the Lagrangian formulation as: 

 

UqGqqqCqqD  )(),()( 
 (1) 

where U  is the torque vector of the joints, D  is the inertia matrix, C  represents the centripetal and Coriolis forces and G 

expresses the effects of gravity (2). By using the state vector as: 
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In the state space form, Eq. (1) is expressed as: 
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Thus, the dynamic equations of motion in state-space are obtained. 
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Expressing the problem of optimal control 

 Supposing that a proper joint torque value exists in the   space (
)(* tU

), the goal is to determine )(* tU  so that the 

general cost function is minimized as follows: 
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where pe
, ve

 and L  are defined as  
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 where 0t
 and ft

 are the initial and final times and pm
 is the maximum load that can be carried by the robotic system. L  

represents a uniform and derivable function. pW
 and vW

 are symmetric, positive semi-definite matrices. 1W
, 2W

 and R  are 

symmetric positive definite matrix. fX1  and fX 2 are the desired values for the position and angular velocity of joints, 

respectively. The cost function determined by Eq. (6) through Eq. (8) is minimized within the entire trajectory of the robot. In 

Eq. (6), the first and second terms are related to minimization of errors of a robot’s position and velocity at the final point, 

respectively. Eq. (8) is related to minimization of a joint’s angular position, velocity and torque throughout the entire trajectory 

of the robot.  
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(9) 

 

 Eq. (9) defines the angular position and angular velocity of each joint at the initial and final point. The permissible bound 

of each motor can express as follows: 
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In indirect method, by introducing a costate vector 
 

, the Hamiltonian function is expressed as: 
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 where, based on the PMP, there exists a non-zero costate vector for a specified pm
 payload for which the following 

optimality conditions must be satisfied. 

 

),()( ,tm,ψ,UX
ψ

Η
tX p

****






 

(12) 

),()( ,tm,ψ,UX
X

Η
tψ p

****






 

(13) 



 

Glob. J. Sci. Res., 3 (3): 12-24, 2014 

15 | P a g e  
 

),(0 t,m,ψ,UX
U

Η
p

***






 

(14) 

 

    0),(),(),(),(

)(),(

****

**

























fffffff

f

T

fff

tttX
t

h
tttUtXH

XtttX
X

h





 

(15) 

 

 In these relations, the symbol (*) indicates the extremals of the states, costates and controls. The obtained optimality 

condition is related to a state in which the state variables and the joints’ torque values are not bounded. In order to apply a 

constraint on the control variables, we should consider the following: 
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 In Eq. (16), U  is a permissible control value. By assuming 


 to be a costate vector, the optimality conditions are obtained 

as Eq. (18) to Eq. (21). 
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 Eq. (18) and Eq. (19) express the required optimality conditions. The achieved solution is a candidate optimal solution. 

Since the upper and lower torque limits have been defined by Eq. (20), the torque value of each motor can be obtained from Eq. 

(22). 
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 Which in this relation, high and low limits of torques’ value is determined as follows. 
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 Which in Eq. (23) the parameter of 
 snssK  211   and 
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Regarding that state vectors are fixed at initial and final periods, thus the Eq. (15) takes the form of Eq. (21) and boundary 

conditions are defined as follows. 
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 Here, the Eq. (18) to (24) express three categories of relations. 

So the Eq. (18-19) define system’s dynamic model. Optimum conditions are obtained by Eq. (22) and boundary conditions by 

Eq.s (21 and 24). 

 In order for solving the two-point boundary value problem, iterative algorithm is used. By inserting Eq. (22, 23) in Eq. (18, 

19), 4n of differential equation is obtained. 4n of boundary condition is obtained from Eq. (24). So, a two-point boundary value 

problem is constructed. In this algorithm, the obtained error value from Eq. (7) should be lower than favorite value of  . 

Therefore: 
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 Where in this relation Xf is the favorite value in the final time and ftX
 is the calculated state vector value at the final point. 

The relative significance of position and velocity error value for each of the joints is determined using Wv and Wp matrices. The 

extreme value of motors capacity (U- and U+) is used for determining portable maximum load. So that if the load value exceeds 

the maximum portable load by the robot, the motor of each joint requires applying a torque greater than the permitted limit which 

causes the joints’ torque to exceed their limits. 

 

Simulation 

 In this part, we deal with the simulation of a planar two-link dynamic arm with the specifications provided in table (1). 

 
Table 1. simulation parameters (16) 

parameter value 

Length of links )(121 MLL 
 

Mass )(,221 Kgmm 
 

Moment of inertia 
).(166.0 2

21 mKgII 
 

Max. no load speed 
)(6.521 s

Rad
ss 

 
Actuator stall torque ).(10421 mNss 

 

 

Fig. (1) shows this robot in the horizontal plane. 
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Figure 1. Schematic of robot and optimal path (16) 

 

 Regarding the reference of (16), the initial position of the end-effector in the XZ plan at st 0  is 
)0,1(0 p

 and the 

final position at 
st 1

 is 
)73.1,0(fp

. Moreover, the velocity of final end effector in the beginning and end of the trajectory 

is zero. Joints’ position and velocity values are obtained from inverse kinematic solution as follows. 

 

0,60

120,120,60

212 01 02

12 01 0





fff

f

qqqqq

qqq





 

(26) 

 

State variables of X1, X2, and U from Eq. (2) are defined as follows. 
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 Where q1 and q2 are the first and second link angles and 21 , qq 
 show the links angle velocity. u1 and u2 show the torque of 

the  first and second link motors. Using Eq. (18), four equations related to dynamic equations state space form is extracted as 

follows. 
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 Where dij , Ci , Gi ,: I, j = 1,2 is related to two-link robot which is provided in the appendix section. Now, by defining penalty 

matrices as  
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And by inserting Eq. (28) in Eq. (8), target function: 
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From Eq. (11), Hamiltonian function is obtained as follows.  
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 Where L and 
4,3,2,1, ixi


 from Eq. (28) and (30) are inserted. Using Eq. (13) deriving from Hamiltonin function, the 

equations related to quasi-states are obtained as follows. 
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 Now, using Eq. (14) and deriving form Hamiltonian function in proportion to control values, the following two relations 

result. 
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By solving these equations, the control values are obtained in the acceptable range. 
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Therefore, optimum control rule for Eq. (22) is written as follows. 
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Which the limitations of control values of each motor is calculated as follows. 
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Where the kij , i, j = 1, 2 values is calculated from motor specifications provided in table (1). 

 

Determining optimum trajectory of maximum load for two-link manipulator using hypothesis of the article (16) 
 In this part, for the given two-link manipulator and boundary conditions in reference (16), maximum of load carrying 

capacity and corresponding optimum trajectory are calculated. Values of W1 , W2 , and R are selected in this way. So that W1 = 

W2 = (0) and R= diag (10-5 , 10-5). For this manipulator, the given boundary conditions, and intended target function, the obtained 

maximum load is 5/53 kg. In order to show the algorithm performance for calculating maximum load, the results of simulation 

for five different load values have been presented in diagrams.  

 In Fig. (2), the position of the end effector in XZ plane for different load values is shown. Figs. (3a) and (3b) show the 

joints’ position with respect to time. Also Figs. (4a) and (4b) variations of angular velocity with respect to time with load carrying 

variations are shown. 
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Figure 2. End effector trajectory in XY plan 

 

  

Figure 3a. angular position of joint 1 Figure 3b. angular position of joint 2 

 

  

Figure 4a. Angular velocities of joints 1 Figure 4b. Angular velocities of joints 2 

 

  

 In Figs. (5a) and (5b), the diagram of the first and second joint torques in proportion to time for different load values has 

been shown. As you can see, with the increase of the load, torque values increase too and progress toward torque limits until 

they reach to their values. As can be seen, the torques have reached saturation for 5/53 kg load and always are on high and low 

limits. In this situation, if the load exceeds 5/53 kg, it necessitates the torques to exceed their limits which it is not possible and 

when the condition (25) is not fulfilled in the problem solution of boundary value, this fact is substantiated. The obtained mp = 

5.53 kg is the maximum load carrying capacity for the intended target function. The obtained result is fully consistent with 

reference (16). 
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Figure 5a. Torques of joint 1 Figure 5b. Torques of joint 2 

 

Determining the optimum trajectory of two-link manipulator by applying dynamic torque assumption 

 In Sec. 3 the maximum load and the corresponding optimum trajectory were obtained. In Ref. (16), torque’s high and low 

limits based on a function of robot’s joints velocity (Eq. (36)) is considered. Regarding that torque’s velocity varies by joints’ 

velocity, in Hamiltonian function it is not derived in proportion to joints’ velocity. Here, the aforementioned problem is 

considered by applying joints’ torque limits dynamically. Using Eq. (36), we arrive at the following relation.  
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From the above two inequalities, the following four inequalities are obtained. 
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Thus, two new state variables are defined as follows (17). 
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(41) 

 

Where H (x) signifies Heaviside function. So, Hamiltonian function is obtained as follows. 
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 Now using derivation from Hamiltonian function in proportion to state and quasi-state variables, two sets of differential 

equations are obtained as follows (17). 
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And quasi-state equations by deriving from Hamiltonian function in proportion to state variables is obtained as follows. 
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(44) 

 

 In Eq. (44), the last two sentences equate zero. Thus, 5 and 6  values will be fixed. By deriving from Hamiltonian 

function in proportion to control torque of Eq. (34) is obtained as follows. 
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 In order to perform the comparison between the presented method in Ref. (16) and the method offered in this paper, 

simulation is performed for the two-link robot which a load equal to 2 kg is placed on its end effector. In what follows, the results 

of simulation are presented in Figs. (6a) to (7b). 

 

 

  

Figure 6a. Comparison angular position of joint 1 Figure 6b. Comparison angular position of joint 2 
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Figure 7a. Comparison angular velocity of joint 1 Figure 7b. Comparison angular velocity of joint 2 

 

 As is evident from the above diagrams, the position and velocity of both states are similar and diagrams are on each other. 

Figs. (8a) and (8b) show the torques of first and second joint. 

 

  

Figure 8a. Comparison torque of joint 1 Figure 8b. Comparison torque of joint 2 

 

 First joint torque value (Fig. (8a)) in second method is greater than the first one. This is because in the first method, after 

the torque value is obtained from Eq. (34), using Eq.s (35-36) the torque value is limited until it reaches saturation, while in the 

second method high and low limits of joints’ torque have been added to Hamiltonian function as unequal constrains. In other 

words, joints’ torques can increase under the influence of angular velocity, while in the method offered in Ref. (16) this was not 

possible. 
 

CONCLUSIONS  

 
 

 In this article, maximum load carrying capacity of two-link robot has been obtained by open chained optimum control 

method and employing Ponyeryagen Minimum Principle. Regarding motors’ limitations, motors’ Torque limitation constrain 

was applied to the problem. The required conditions of optimality were obtained once by Ref. (16) and another time by dynamic 

torque assumption. In method Ref. (16), this constrain is not fed into Hamiltonian function, while using a new method which is 

employed in this article, this constrain has been fed into Hamiltonian function as an inequality and therefore is fed into state and 

quasi-state equations. The obtained differential equations set along with boundary conditions forms a two-point boundary value 

equation set which was solved using BVP4C command of MATLAB software. By performing the simulation which was carried 

out about a planar two-link robot in order to determine maximum load carrying capacity in point- to- point motion, it is shown 

that joints’ position and angular velocity in both states is the same.  

 

Appendix 

 The motion of manipulator is performed in horizontal plane, therefore, gravity velocity is taken as zero. Inertia matrix of a 

two- link manipulator is expressed as follows. 
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Lateral-Coriolis forces of C center and gravity force of G are defined as follows. 
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Thus, dynamic equations of a two- link robot in the horizon plane are obtained. 
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